Ribophorin I acts as a substrate-specific facilitator of N-glycosylation.
نویسندگان
چکیده
The mammalian oligosaccharyltransferase (OST) complex is composed of about eight subunits and mediates the N-glycosylation of nascent polypeptide chains entering the endoplasmic reticulum (ER). The conserved STT3 subunit of eukaryotic OST complexes has been identified as its catalytic centre, yet although many other subunits are equally well conserved their functions are unknown. We used RNA interference to investigate the function of ribophorin I, an ER-translocon-associated subunit of the OST complex previously shown to associate with newly synthesised membrane proteins. We show that ribophorin I dramatically enhances the N-glycosylation of selected membrane proteins and provide evidence that it is not essential for N-glycosylation per se. Parallel studies confirm that STT3 is essential for transferase activity of the complex, but reveal that the two mammalian isoforms are not functionally equivalent when modifying bona fide polypeptide substrates. We propose a new model for OST function where ribophorin I acts as a chaperone or escort to promote the N-glycosylation of selected substrates by the catalytic STT3 subunits.
منابع مشابه
OST4 is a subunit of the mammalian oligosaccharyltransferase required for efficient N-glycosylation
The eukaryotic oligosaccharyltransferase (OST) is a membrane-embedded protein complex that catalyses the N-glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum (ER), a highly conserved biosynthetic process that enriches protein structure and function. All OSTs contain a homologue of the catalytic STT3 subunit, although in many cases this is assembled with several addi...
متن کاملAn evolving view of the eukaryotic oligosaccharyltransferase.
Asparagine-linked glycosylation (ALG) is one of the most common protein modification reactions in eukaryotic cells, as many proteins that are translocated across or integrated into the rough endoplasmic reticulum (RER) carry N-linked oligosaccharides. Although the primary focus of this review will be the structure and function of the eukaryotic oligosaccharyltransferase (OST), key findings prov...
متن کاملIsolation and characterization of cDNA clones for rat ribophorin I: complete coding sequence and in vitro synthesis and insertion of the encoded product into endoplasmic reticulum membranes
Ribophorins I and II are two transmembrane glycoproteins that are characteristic of the rough endoplasmic reticulum and are thought to be part of the apparatus that affects the co-translational translocation of polypeptides synthesized on membrane-bound polysomes. A ribophorin I cDNA clone containing a 0.6-kb insert was isolated from a rat liver lambda gtll cDNA library by immunoscreening with ...
متن کاملUnraveling the mechanism of protein N-glycosylation.
Asparagine-linked glycosylation is the most ubiquitous protein co-translational modification in the endoplasmic reticulum (ER). The enzyme that catalyzes this process is called oligosaccharyl transferase (OT). It catalyzes the transfer of an oligosaccharyl moiety (Glc3Man9GlcNAc2) from the dolichol-linked pyrophosphate donor to the side chain of Asn within a consensus sequence of Asn-X-Thr/Ser,...
متن کاملmu-Opioid receptor cell surface expression is regulated by its direct interaction with Ribophorin I.
The trafficking of the mu-opioid receptor (MOR), a member of the rhodopsin G protein-coupled receptor (GPCR) family, can be regulated by interaction with multiple cellular proteins. To determine the proteins involved in receptor trafficking, using the targeted proteomic approach and mass spectrometry analysis, we have identified that Ribophorin I (RPNI), a component of the oligosaccharide trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 120 Pt 4 شماره
صفحات -
تاریخ انتشار 2007